
Data Dependence Analysis for

an Untrusted Transaction Manager

Myong H. Kang
Naval Research Laboratory

Code 5542
Washington, D.C. 20375

Abstract

There are two components in the scheduler for
multilevel-secure databases which use the replicated
architecture; global and local schedulers. Since the global
scheduler, which enforces data consistency among repli-
cas, has to make scheduling decisions based on transac-
tions (i.e., without any knowledge of actual data or physi-
cal layout of data), an accurate analysis technique which
can detect conflicts among queries is needed. The data
dependence analysis introduced here provides a method
for precisely determining whether the portions of relations
affected by various database operations overlap without
the knowledge of actual data.

1. Introduction

There are many approaches for multilevel database
systems which protect classified information from unau-
thorized users based on the classification of the data and
the clearances of the users [3, 9]. One approach, which is
called the replicated architecture approach [4], uses a phy-
sically distinct backend database management system for
each security level. Each backend database contains
information at a given security level and all data at lower
security levels. The system security is assured by a
trusted frontend which permits a user access to only the
backend database system which matches his/her security
level.

The SINTRA1 database system, which is currently
being prototyped at Naval Research Laboratory, is a mul-
tilevel trusted database management system based on this
replicated architecture. The replicated architecture system
contains a separate database system for each security level
and few interfaces among different database systems. The
database at each security level contains data at the current
security level and replicated data from lower security lev-

els.

At first glance, a database mangement system for
each security level may seem excessive. However, we
think this approach has the following merits:

g The security policy can be easily enforced by care-
fully designing interfaces among different database
systems.

g Development cost can be reduced because commer-
cial database systems for backend computers are
widely available.

g The amount of trusted software can be minimized.

g Performance can be improved by using optimiza-
tion and parallelization techniques which have been
developed for conventional databases. This is the
case because the replicated architecture uses con-
ventional database systems as backend database
systems, and uniprocessor or multiprocessor com-
puters can be chosen as backend computers without
affecting the security policy.

The SINTRA database system consists of one
trusted front end (TFE) and several untrusted backend
database systems (UBD). The role of a TFE includes user
authentication, directing user queries to the backend,
maintaining data consistency among backends, etc. Each
UBD can be any commercial off-the-shelf database sys-
tem. Currently, we are using Honeywell XTS-200 system
as a trusted frontend and ORACLE databases which are
running on SUN4/300 as backend databases. The back-
end and frontend computers are connected through Ether-
net. Figure 1 illustrates the SINTRA architecture.

hhhhhhhhhhhhhhhhhh
1. Secure INformation Through Replicated Architecture

hhhhhhhh

c
c
c
c
c
c
chhhhhhhhhhhhhhhhhhhhc

c
c
c
c
c
c
hhhhhhhhhhhhhhhhhhhh

c
c
c
c
c
c
chhhhhhhhhhhhhhhhhhhhc

c
c
c
c
c
c
hhhhhhhhhhhhhhhhhhhh

c
c
c
c
c
c
chhhhhhhhhhhhhhhhhhhhc

c
c
c
c
c
c
hhhhhhhhhhhhhhhhhhhh

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

hhhhhhhhhhhhh
cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
chhhhhhhhhhhhh

cc
c
c
c

cc
c
c
c

cc
c
c
c

cc
c
c
c

cc
c
c
c

cc
c
c
c

Ac

As

Ats

Rs

Qc

Qts

Rts

Rc

Qs

Frontend
Trusted

Scheduler
Global Top Secret

Secret
Confidential

Secret
Confidential

Confidential

Users

Confidential Backend

Secret Backend

Top Secret Backend
Global Off-the-shelf

DatabaseScheduler

Global Off-the-shelf
DatabaseScheduler

Scheduler Database
Off-the-shelfGlobal

Figure 1: The SINTRA Architecture.

Concurrency Control Problem in the SINTRA system

Since each UBD in a replicated architecture con-
tains data from lower levels, update queries have to be
propagated to higher security level databases. If this pro-
pagation of update queries is not carefully controlled,
inconsistent database states among backend databases can
be created. It turned out that even the order of non-
conflicting transactions which is determined at lower
security level must be preserved at higher security level
[7] to preserve one-copy serializability (1SR).

Consider the security lattice in figure 2, and two
non-conflicting L-level transactions Ti and Tj. Also con-
sider an M1-level transaction Tu, and an M2-level tran-
saction Tv. Let’s further assume that Tu conflicts with Ti
and Tj, and Tv conflicts with Ti and Tj. Since two transac-
tions, Ti and Tj, are not conflicting and our security model
does not allow write-down, an execution order <Ti, Tu,
Tj> at security class M1 and an execution order <Tj, Tv,
Ti> at security class M2 will generate the same result on
replicas of security class L data. However, the reversed
order between Ti and Tj at security classes M1 and M2
will create confusion. Specifically, at security class H, a
consistent ordering among Ti, Tj, Tu, and Tv cannot be
determined then 1SR will be violated. Consequently, any
global scheduler which does not enforce the same order-
ing among transactions at each relevant UBD may fail to
produce consistent schedules. Thus any algorithm which
gives 1SR schedules must preserve the orderings which is

determined at lower levels.

L <Ti, Tj>

M2 <Tj, Tv, Ti>M1<Ti, Tu, Tj>

H

H > M1 > L
H > M2 > L

Figure 2: A security lattice

The scheduler for the SINTRA architecture has two
components; global and local schedulers. The local
schedulers, which are the concurrency controllers of the
off-the-shelf database systems, enforce serializability
among transactions which are submitted to backend data-
base systems. On the other hand, the global scheduler
enforces data consistency among the UBDs. To preserve
1SR, the global scheduler of the SINTRA system has to
pass the information on serialization order from the lower
security level to higher security level UBDs, and that seri-
alization order has to be maintained. One way to achieve
this goal is:

(1) When update transactions are propagated to higher
security levels, this propagation order must be the
same as the serialization order.

(2) When the update transactions from the lower secu-
rity level arrive, submit one transaction and wait
until that transaction is committed at the backend,
and then submit next transaction.

This serial execution is necessary since most of the off-
the-shelf database systems do not guarantee that the seri-
alization order of transactions is the same as the submis-
sion order.

An alternative approach of the SINTRA global
scheduler (whose detailed description appears in [7]) may
replace step (2) to the followings:

(2.1) Submit update transactions from lower levels to the
backend as they arrive.

(2.2) If update transactions from lower levels are serial-
ized in the same order as they are submitted to UBD
then commit those and propagate them up (i.e., the
propagation order is the same as the serialization
order).

(2.3) Otherwise test if there is a conflict among transac-
tions whose serialization order is different from the
submission order.

[a] If there is no conflict among these out-of-
ordered transactions then commit them, and
rearranges those transactions so that the sub-
mission order is preserved before the global
scheduler propagates them up (i.e., since only
the order of transactions which do not conflict
has been changed, the results of execution
will not be altered).

[b] Otherwise roll back and re-submitt the part of
these transactions.

It is clear from the above that the global scheduler needs a
good tool to detect conflicts.

The local scheduler typically uses locks or times-
tamps based on the knowledge of actual data or physical
layout of the data in each UBD. The basic units for locks
or timestamps may be relations, fixed-sized pages, or
tuples depending on the granularity of local schedulers.
However, the global scheduler has very little knowledge
about the behavior of the local scheduler or the physical
layout of data. For example, the global concurrency con-
troller has no knowledge about where a specific tuple is
located or which physical page should be locked. Some-
times the tuples which will be modified are unknown until
the computation based on existing data is completed. The
above factors may force the global concurrency controller
to use relations as basic units to detect conflicts among
transactions. Such a scheduler will be too restrictive and
inefficient because it ignores the fact that referencing only
a few tuples or few attributes of a relation is not the same
as referencing the entire relation.

In this paper, we introduce the data dependence
analysis which can detect conflicts without any knowledge
of actual data or physical layout of data on the backend.
The primary goal of data dependence analysis is to pre-
cisely determine if the portions of relations affected by
various operations overlap. If there is no overlap, the
query processing will permit the operations to be executed
out of sequence, or even in parallel, without altering the
results. A similar concept has appeared in database con-
currency control literature. What dependence analysis
traditionally defines as any of several different types of
dependence corresponds to the concept of a conflict for
databases.

This paper is organized as follows. Section 2
discusses transaction model for the SINTRA system. The
data dependence analysis of database queries which is
used by the global scheduler is presented in section 3.
Finally, section 4 summarizes the contributions of this
paper.

2. Transaction Model

We adopt a layered model of transactions, where a
transaction is a sequence of queries, and each query can
be considered as a sequence of reads and writes. For
example, replace and delete queries can be viewed
as a read operation followed by a write operation,
insert can be viewed as a write operation, and
retrieve can be viewed as a read operation.

Definition 1.

A transaction Ti is a sequence of queries, i.e., Ti =
<qi1, qi2, ..., qin>. Each query, qij, is an atomic
operation and is one of retrieve, insert,
replace, or delete.

To model the propagation of updates produced by a given
transaction to higher security level databases, update pro-
jection is defined.

Definition 2.

An update projection Ui, which corresponds to a
transaction Ti, is a sequence of update queries, e.g.,
Ui = <qi2, qi5, ..., qin> obtained from transaction Ti
by simply removing all retrieve queries.

Note that unlike interactive user transactions, a complete
query sequence of an update projection is always known
to the global scheduler.

3. Data Dependence Analysis

The primary difference between traditional depen-
dence analysis [8, 10, 12] and the scheme that we propose
lies in the need to directly analyze properties of a relation
which are affected by operations. The primary goal of
data dependence analysis is to precisely determine if the
portions of relations affected by various operations over-
lap. Clearly, operations on different relations do not over-
lap. Even when operations access different fields of the
same tuples of a relation, sometimes there may be no
overlap and hence no dependence.

Before we present the detail analysis, we present
three basic types of dependence. In our examples, the fol-
lowing two relations constitute the database:

EMP(name, position, salary, dept)
PRODUCT(item, price, dept)

3.1. Basic Dependence Analysis

In this section, we describe the basic data depen-
dence analysis of database queries treating each relation
as a single entity. Three basic types of data dependence

(true, anti, and output dependences) have been used [8,
10] to describe the properties of data references in con-
ventional language programs. These types of data depen-
dence can also be applied to describe references to rela-
tions within database queries. Consider the following
three queries:

Q1: delete(EMP, EMP.dept = ’appliance’)
Q2: retrieve(EMP.all, EMP.salary > 50)
Q3: replace(EMP, EMP.salary < 20,

EMP.salary = EMP.salary * 1.1)

Q1 and Q2 cannot be executed at the same time since
Q2 uses the relation EMP which is modified by Q1. This
is called true dependence or flow dependence (similar to
write-read conflict). Q3 also depends on Q1; thus Q1
must be executed before both Q2 and Q3. Q1 and Q2
use the relation EMP before Q3 modifies it. Since Q1
and Q2 use the ‘‘old’’ values of relation EMP, these
must be executed before Q3; this is called anti-
dependence (a read-write conflict). The third kind of
dependence is shown between Q1 and Q3. Q1 modifies
relation EMP and then Q3 modifies the same relation. If
Q1 and Q3 are executed at the same time, there may be
an uncommitted dependency problem [2] caused by the
asynchronous update of the EMP relation. This is called
output dependence (a write-write conflict).

Since the basic dependence analysis treats each
relation as a single entity, it is efficient but not precise.
Hence, the basic dependence analysis can be treated as a
filter. Alternatively, if the basic dependence analysis
determines that there is no dependence between two
queries then no additional analysis is required. However,
if the basic dependence analysis suggests that there may
be dependences between two queries, then further
analysis, which will be described in the following section,
may be applied.

3.2. Advanced Dependence Analysis

The dependence analysis presented in this section
attempts to precisely describe the vertical and horizontal
portions of relations which are accessed in each query.
We consider the queries that have condition predicates
which is Boolean combinations of selection and join con-
ditions.

3.2.1. Notation and Basic Concepts

Each query contains a condition predicate (clause)
which is a Boolean combination of atomic conditions.
Each atomic condition may specify a selection or a join
operation, and each condition is connected by connectives
∈ {/\, \/}. The Boolean operator ‘‘not’’ is not considered

in this paper because a predicate α which contains ‘‘not’’
operators can be converted into an equivalent predicate α’
which does not contain ‘‘not’’ operator in polynomial
time [5].

Rosenkrantz and Hunt [11] developed an algorithm
which can determine the satisfiability of restricted class of
conjunctive Boolean expressions in polynomial time. In
this restricted class, an atomic condition must be of the
form x op c, x op y, or x op y + c, where c is a
constant, x and y are attributes of relation(s), and op ∈
{=, <, ≤, >, ≥}. In this paper, conjunctive predicates are
assumed to be in this restricted class. If there exists a
condition of the form x ≠ y + c, then this must be
converted to (x < y + c) \/ (x > y + c).

In this paper, A, B, C, D, and E are used to
represent an atomic condition such as EMP.dept =
PRODUCT.dept, and α, β, and γ are used to represent
the conjunctive predicates such as EMP.salary > 50
/\ EMP.dept = ’Business’.

In data dependence analysis, we use a functional
notation to represent high-level queries. The general form
is O(R, P, V) where O specifies an operation such as
append, delete, replace, retrieve on rela-
tion in R; P is a predicate over relation in R; and V is
attribute value assignments which specify how attributes
of relation in R are replaced. The intended semantics of
operation is: if O is append or delete, then V is
empty and all tuples satisfying P are inserted or deleted
in R; if O is replace, then V is not empty, all tuples
in relation R satisfying P are modified; if O is
retrieve then V is empty and R specifies set of attri-
butes which should be retrieved from the tuples which
satisfy P.

Note that a relation which appears in R will be
modified (write action) if O is an update operation, and
relations which appear in P will be used (read action) to
find the tuples that will be either updated or retrieved. If
O is either delete or replace, the same relation
should appear in both R and P. Therefore, both a read
and a write will be done to the relation in R. However, if
O is append then tuple(s) which does not exist in rela-
tion R is added to R. Hence, append is a write-only
action as far as the relation R is concerned.

Before the advanced data dependence analysis is
performed, four sets of the database will be defined for
each query.

Definition 4.

g Vertical read set (VRS) of a given operation is the
set of attributes whose values may be examined by
the operation.

g Vertical write set (VWS) of a given operation is
the set of attributes whose values may be changed
by the operation.

g Horizontal read set (HRS) of a given operation is
the set of tuples from which some attribute value(s)
may be examined by the operation.

g Horizontal write set (HWS) of a given operation is
a the set of tuples in which some attribute value(s)
may be changed (or created) by the operation.

All attributes which appear in P belong to VRS of the
operation. If O is retrieve operation, all attributes
which appear in R also belong to VRS; if O is
replace then all attributes which appear at the right
hand side of assignments in V also belong to VRS. If O
is either delete or append, then all attributes of the
relation, which appears in R, belong to VWS; if O is
replace then only attributes which appear at the left
hand side of assignments in V belong to VWS.

Horizontal sets are generally denoted as {tR | α},
representing the set of tuples in relation R which satisfy
the condition α.

Now we define two types of conflicts.

Definition 5.

g Two queries conflict vertically if vertical sets from
two queries are not disjoint and at least one of them
is a write set.

g Two queries conflict horizontally if horizontal sets
from two queries are not disjoint and at least one of
them is a write set.

If two queries conflict both vertically and horizontally
then there is some type of dependence between these two
queries. If there is either no conflict or only one type of
conflict then there is no dependence — which implies that
the order of execution of the queries will not affect the
results obtained.

In addition, we consider the relationship between
predicates.

Definition 6.

A predicate α is independent of predicate β in rela-
tion R iff two sets {tR | α} and {tR | β} are disjoint
(i.e., {tR | α} | | {tR | β}).

Note that the definition of independence between α and β
is similar to (α /\ β) is unsatisfiable in [11]. However,
there is an important difference between these two
definitions. For instance, let α ≡ (R.a ≤ 30 /\ R.b = S.c /\
S.d ≤ 3000) and β ≡ (R.a ≤ 40 /\ R.b = S.c /\ S.d ≥ 6000).
(α /\ β) is unsatisfiable according to [11] and α is indepen-

dent of β in relation S. However, α is not independent of
β in relation R [6].

To demonstrate the application of the above con-
cepts, consider the queries:

Q1: replace(EMP, EMP.name = ’Lisa’,
EMP.position = ’Manager’)

Q2: replace(EMP, EMP.salary < 45,
EMP.salary = EMP.salary * 1.07)

The first query, Q1, generates the sets:

VRS ≡ {EMP.name}

VWS ≡ {EMP.position}

HRS ≡ {tEMP| EMP.name = ’Lisa’}

HWS ≡ {tEMP| EMP.name = ’Lisa’}

The second query, Q2, generates the sets:

VRS ≡ {EMP.salary}

VWS ≡ {EMP.salary}

HRS ≡ {tEMP| EMP.salary < 45}

HWS ≡ {tEMP| EMP.salary < 45}

When the regions of the intersection of four sets from the
first query, Q1, and the intersection of four sets from the
second query, Q2, are displayed in the same table (figure
3), we can easily see that these regions do not overlap.

Name Position Salary Dept

Engineer
cc
c
hhhhhhhhhh

cc
chhhhhhhhhh

35
cc
c
hhhhhhhhhh

cc
chhhhhhhhhh

Staff
cc
c
hhhhhhhhhh

cc
chhhhhhhhhh

Business
cc
c
hhhhhhhhhh

cc
chhhhhhhhhh

Manager
cc
c
hhhhhhhhhh

cc
chhhhhhhhhh

Sales
cc
c
hhhhhhhhhh

cc
chhhhhhhhhh

36
cc
c
hhhhhhhhhh

cc
chhhhhhhhhh

Staff
cc
c
hhhhhhhhhh

cc
chhhhhhhhhh

Engineer
cc
c
hhhhhhhhhh

cc
chhhhhhhhhh

52
cc
c
hhhhhhhhhh

cc
chhhhhhhhhh

Manager
cc
c
hhhhhhhhhh

cc
chhhhhhhhhh

Bart
cc
c
hhhhhhhhhh

cc
chhhhhhhhhh

Andrew
cc
c
hhhhhhhhhh

cc
chhhhhhhhhh

Lisa
cc
c
hhhhhhhhhh

cc
chhhhhhhhhh

Carol
cc
c
hhhhhhhhhh

cc
chhhhhhhhhh

41
cc
c
hhhhhhhhhh

cc
chhhhhhhhhh

Figure 3: Independence of Sample Queries

In the following two sections, we discuss the
method to make use of the above information.

3.2.2. Use of Informations from Horizontal Sets

In this section, we describe how potential depen-
dence relationships from basic dependence analysis can
be removed using informations from horizontal sets. The
method for removing potential dependence relationships
using informations from vertical sets is described in next

section.

If there is no dependence between two queries, Q1
and Q2, the execution order will not affect the result.
Therefore, before removing potential dependences
between queries, it should be clear that the execution
order of both <Q1, Q2> and <Q2, Q1> produce the same
result. In this section, we use an independence test to find
if two predicates are independent in a specific relation.
The algorithm to test the independence of given predicates
is presented in [6].

Append Query

The append query adds new tuples to a relation. If
append follows another query, Q2, Q2 cannot access
new tuples which will be added by append. Hence, if
an execution order <Q1, Q2>, where Q1 is append,
accesses disjoint horizontal sets, then another execution
order <Q2, Q1> will also access disjoint horizontal
sets. Consider the following 2 queries:

Q1: append(EMP, (’John’, ’trainee’, 25,
’business’))

Q2: delete(EMP, EMP.dept = ’appliance’)

The basic dependence analysis suggests that there may be
true and output dependences between Q1 and Q2. How-
ever, when the independence property is tested after the
appended tuple is converted to predicate form, we find
that there is no such dependence between Q1 and Q2.
This is because (EMP.name = ’John’ /\
EMP.position = ’trainee’ /\ EMP.salary =
25 /\ EMP.dept = ’business’) from Q1 and
(EMP.dept = ’appliance’) from Q2 are
independent in EMP.

Delete Query

The delete query removes tuples from a relation.
Hence, the set of tuples in the relation after the delete
operation will be a subset of the set of tuples in that rela-
tion before the delete operation. Therefore, if an exe-
cution order <Q1, Q2>, where Q2 is a delete query,
accesses different horizontal sets, then another execution
order <Q2, Q1> will also access different horizontal
sets. Consider the following two queries:

Q1: retrieve(EMP.all, EMP.salary < 30
/\ EMP.position = ’programmer’)

Q2: delete(EMP, EMP.salary > 70 /\
PRODUCT.item = ’HDTV’ /\
EMP.dept = PRODUCT.dept)

Since two of the predicates from Q1 and Q2 are
independent in EMP, there is no dependence between
queries Q1 and Q2.

Replace Query

Resolving the dependence relationship between
queries, where one of them is replace is more compli-
cated because a modified tuple may be either examined or
changed by the other query. Consider the following
queries:

Q1: replace(EMP, EMP.salary ≥ 35,
EMP.salary = EMP.salary * 0.8)

Q2: retrieve(EMP.all, EMP.salary < 30 /\
EMP.position = ’programmer’)

Even though EMP.salary ≥ 35 from Q1 is indepen-
dent of EMP.salary < 30 /\ EMP.position =
’programmer’ from Q2 in EMP, there is a depen-
dence relationship between two queries. Consider a tuple
t ≡ (’John’, ’engineer’, 35,
’engineer’). Since t satisfies the condition of Q1,
t will be replaced by t’ ≡ (’John’,
’engineer’, 28, ’engineer’). Since t’
satisfies the condition of Q2, it will be retrieved. Hence,
there exists dependence between Q1 and Q2 because
two queries may access the same data.

Therefore, if replace query is involved in a
dependence relationship, independence test may be
required both before and after the modification. Consider
a sequence of two queries Q1 ≡ O1(R1, P1, V1)
and Q2 ≡ O2(R2, P2, V2). Let Vj ≡ {v1, ...
, vn} where j is either 1 or 2, vi is an assignment to
an attribute in relation Rj and n is less than or equal to
the number of attributes in Rj. Let Pi(Vj) be the new
predicate which replaces the left hand side of the replace
assignment which appears in Pi with right hand side of
replace assignment in Vj. For example, if Pi ≡
(EMP.salary < 30 /\ EMP.position = ’pro-
grammer’) and Vj ≡ (EMP.salary =
EMP.salary * 0.8), then Pi(Vj) ≡
(EMP.salary * 0.8 < 30 /\ EMP.position =
’programmer’).

If there is only true dependence between Q1 and
Q2, and O1 is replace then relation R1 will be
updated by replace. Therefore, if P1 is independent
of P2 in R1, and P1 is independent of P2(V1) in R1
then there is no dependence between Q1 and Q2.

If there is only anti-dependence between Q1 and
Q2, and O2 is replace then relation R2 will be
updated by replace. Therefore, if P1 is independent
of P2 in R2, and P2 is independent of P1(V2) in R2

then there is no dependence between above two queries.

If there exist both true dependence and anti-
dependence between Q1 and Q2, and O1 and O2 are
both replace then the following 4 tests:

a) P1 is independent of P2 in R1,

b) P1 is independent of P2(V1) in R1,

c) P1 is independent of P2 in R2, and

d) P2 is independent of P1(V2) in R2
must be true. However, if R1 and R2 are the same rela-
tion (i.e., output dependence exists), then test (c) can be
omitted because (a) and (c) are the same tests.

3.2.3. Use of Informations from Vertical Sets

Now we show how VRS and VWS can be used to
resolve potential dependence relationships which are sug-
gested by the basic dependence analysis. Consider the fol-
lowing example:

Q1: retrieve((EMP.name, EMP.dept),
EMP.position = ’manager’)

Q2: replace(EMP, EMP.salary < 20,
salary = salary * 1.1)

In the above example, VRS of Q1 is {EMP.name,
EMP.dept, EMP.position} and VWS of Q2 is
{EMP.salary}. Since VRS of Q1 and VWS of Q2 are
disjoint sets, there is no dependence between two queries.

Note that resolving potential dependence relation-
ship using vertical set is limited among retrieve and
replace queries because, in general, append and
delete affect all attributes of a relation.

3.2.4. Dependence Analysis Algorithm

The basic dependence analysis reveals potential
dependence relationships among queries. The following
algorithm summarizes the advanced dependence analysis
to obtaining precise dependence relationships between
two queries.

Algorithm: DEPENDENCE ANALYSIS

Input:

a sequence of two queries Oi(Ri, Pi, Vi) and Oj(Rj,
Pj, Vj) which may have dependence relationship(s),
and type of dependence relationship(s) from basic
dependence analysis.

Output:

‘‘YES’’ if dependence relationship exist,

‘‘NO’’ if dependence relationship does not exist

Comment:

Pi and Pj are assumed to be conjunctive predicates.
Also append query is expected to pass predicate
instead of appended tuple(s).

Method:

if two queries have non conflicting vertical sets then
return(NO);

if output dependence exists then
if DEPEND(Pi, Pj, Ri) = YES then

return(YES);
else

if true dependence exists then
if DEPEND(Pi, Pj, Ri) = YES then

return(YES);
if anti-dependence exists then

if DEPEND(Pi, Pj, Rj) = YES then
return(YES);

if Oi is append or Oj is append then
return(NO);

if Oi is replace and true dependence exists then
if Pj = Pj(Vi) then

return(NO);
if DEPEND(Pi, Pj(Vi), Ri) = YES then

return(YES);
if Oj is replace and anti-dependence exists then

if Pi = Pi(Vj) then
return(NO);

if DEPEND(Pi(Vj), Pj, Rj) = YES then
return(YES);

return(NO);

Procedure: DEPEND(Pi, Pj, R)

/* See [6] for independence test */

if Pi is independent of Pj in R then
return(NO);

return(YES);

3.3. Incremental Data Dependence Analysis

The dependence analysis can be incrementally
applied to database transactions. The only requirement
for incremental dependence analysis is that for a new tran-
saction, the complete (query sequence of the) transaction
is used by the dependence analysis to guarantee serializa-
bility.

Suppose that the system receives a sequence of
transactions <T1, T2, T3, ..., Tn>. The dependence analysis
is applied to generate dependence relationships among
transactions. This analysis can remove all dependence
relationships between T1 and other transactions as soon as
T1 is committed. Suppose that at later time one additional
transaction arrives, making the sequence <T2, T3, T4, ...,
Tn, Tn+1>. All existing dependence relationships are still
valid; only the dependence relationships between Tn+1
and other transactions need to be analyzed.

4. Conclusions

We have introduced the data dependence analysis
which can be used by the global scheduler for multilevel-
secure databases which use the replicated architecture.
The primary goal of data dependence analysis is to pre-
cisely determine if the portions of relations affected by
various operations overlap without the knowledge of
actual data or physical layout of the data in each untrusted
backend database. If there is no overlap, the query pro-
cessing will permit the operations to be executed out of
sequence or concurrently.

Using dependence analysis permits efficient tran-
saction management while permitting the use of off-the-
shelf database systems as the backends in the replicated
architecture multilevel database systems. We believe that
dependence analysis plays more important role if parallel
machines are used as the backend computers. This is the
case connecting to host hcig.itd (128.60.2.61), port 530
connection open because the more transactions are sub-
mitted simultaneously, the better the chances are to find
useful parallelism.

We believe the data dependence analysis may have
broad application in non-multilevel database. For exam-
ple, the data dependence analysis can be applied to batch
jobs or database programming because entire contents of a
transaction is known beforehand. Also this technique can
be used by the transaction preanalysis technique in real-
time database [1].

References

[1] Buchmann, A., et el. Time-critical database
scheduling: A framework for integrating real-time

scheduling and concurrency control. Proceedings
of Conference on Data Engineering (1989).

[2] Date, C. J. An introduction to database systems.
(Addison Wesley, 1986).

[3] Denning, D. Commutative filters for reducing infer-
ence threats in multilevel database systems.
Proceedings of the IEEE symposium on Security
and Privacy (1985).

[4] Froscher, J. N., and Meadows, C. Achieving a
trusted database management systems using paral-
lelism. in Database Security II: Status and Prospects
(North-Holland 1989)

[5] Hunt, H., and Rosenkrantz, D. The complexity of
testing predicate locks. Proceedings of ACM SIG-
MOD International Conference on Management of
Data (1979)

[6] Kang, M. H. Optimization and parallelization of
database queries. Ph.D. Dissertation, Purdue
University (1991).

[7] Kang, M. H., Froscher, J. N., and Costich, O. A
practical transaction model and untrusted transac-
tion manager for multilevel-secure database sys-
tems. IFIP WG 11.3 Sixth Working Conference on
Database Security (1992).

[8] Kuck, D. J. The structure of computers and compu-
tations, Vol. 1 (Wiley, 1978).

[9] Lunt, T., et el. The seaview security model. IEEE
Transaction on Software Engineering, 16, 6 (1990).

[10] Padua, D. A., and Wolfe, M. J. Advanced compiler
optimizations for supercomputers. Communica-
tions of the ACM, 29, 12 (1986).

[11] Rosenkrantz, D., and Hunt, H. Processing conjunc-
tive predicates and queries. Proceedings of the
Conference on Very Large Data Bases (1980).

[12] Wolfe, M., and Banerjee, U. Data dependence and
its application to parallel processing. International
Journal of Parallel Programming, 16, 2 (1987).

